1. (Hatcher, number 2.1.14) Determine whether there exists a short exact sequence

 $0 \to \mathbb{Z}_4 \to \mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4 \to 0.$

More generally, determine which abelian groups A fit into a short exact sequence

$$0 \to \mathbb{Z}_{p^m} \to A \to \mathbb{Z}_{p^n} \to 0$$

with p prime. What about the case of short exact sequences

$$0 \to \mathbb{Z} \to A \to \mathbb{Z}_n \to 0?$$

- 2. (Hatcher, number 2.1.20) Show that $\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(SX)$ for all n, where SX is the suspension of X; $SX = X \times I/(x, 1) \sim (y, 1)$ and $(x, 0) \sim (y, 0)$ for all $x, y \in X$.
- 3. (Hatcher, number 2.1.26) Show that $H_1(X, A)$ is not isomorphic to $\tilde{H}_1(X/A)$ if X = [0, 1] and A is the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots$ together with its limit 0.
- 4. (Hatcher, number 2.2.2) Given a map $f: S^{2n} \longrightarrow S^{2n}$, show that there is some point $x \in S^{2n}$ with either f(x) = x or f(x) = -x. Deduce that every map $\mathbb{RP}^{2n} \longrightarrow \mathbb{RP}^{2n}$ has a fixed point. Construct maps $\mathbb{RP}^{2n-1} \longrightarrow \mathbb{RP}^{2n-1}$ without fixed points from linear transformations $R^{2n} \longrightarrow \mathbb{R}^{2n}$ without eigenvectors.
- 5. (Hatcher, number 2.2.8) A polynomial f(z) with complex coefficients, viewed as a map $\mathbb{C} \longrightarrow \mathbb{C}$, can always be extended to a continuous map of one-point compactifications $\hat{f}: S^2 \longrightarrow S^2$. Show that the degree of \hat{f} equals the degree of f as a polynomial. Show also that the local degree of \hat{f} at a root of f is the multiplicity of the root.
- 6. Prove the Brouwer fixed point theorem: Any continuous map $f : \mathbb{D}^n \longrightarrow \mathbb{D}^n$ admits a fixed point.
- 7. By considering T^2 as $\mathbb{R}^2/\mathbb{Z}^2$, we see that $SL(2,\mathbb{Z})$ acts on T^2 via homeomorphisms. For $\phi \in SL(2,\mathbb{Z})$, let $Y_{\phi} = (S^1 \times \mathbb{D}^2) \cup_{\phi} (S^1 \times \mathbb{D}^2)$. Determine $H_*(Y_{\phi})$ in terms of ϕ .
- 8. Given $\phi \in SL(2,\mathbb{Z})$, consider the mapping torus of T^2 with respect to ϕ : $X_{\phi} = T^2 \times I/(x, 1) \sim (\phi(x), 0)$. Compute $H_*(X_{\phi})$ in terms of ϕ .
- 9. For any knot in \mathbb{R}^3 , compute $H_*(\mathbb{R}^3 \setminus \nu K)$, where νK is a neighborhood of the knot.